Acta Biomateriala (2023)
Xeroudaki M., Rafat, M., et al. A double-crosslinked nanocellulose-reinforced dexamethasone-loaded collagen hydrogel for corneal application and sustained anti-inflammatory activity. 172, 234-248, Impact Factor: 9.4, https://doi.org/10.1016/j.actbio.2023.10.020
- Nature Biotechnology (2022), Rafat, M., et al. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Impact Factor: 68.164
https://doi.org/10.1038/s41587-022-01408-w
- Nature Biotechnology (2022), N Lagali, M Rafat, Accessible bioengineered corneal tissue to address a blinding disease globally..
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1691781&dswid=8057
- Nature Scientific Reports (2020), Xeroudaki M. et al. 10 (1), 1-18, October 2020 A porous collagen-based
hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery.
https://www.nature.com/articles/s41598-020-73730-9
- Cornea (2020), Khodaparast et al. Sutureless Femtosecond Laser–Assisted Anterior Lamellar Keratoplasty
Using a Bioengineered Cornea As a Viable Alternative to Human Donor Transplantation for
Superficial Corneal Opacities.: June 16, 2020
https://pubmed.ncbi.nlm.nih.gov/32558727/
- Cell Transplantation(2020), Spinozzi D. et al. In Vitro Evaluation and Transplantation of Human Corneal Endothelial Cells Cultured on Biocompatible Carriers, 29(4):096368972092357, January 2020.
https://pubmed.ncbi.nlm.nih.gov/32363924/
- Current Eye Research (2019), Spinozzi D. et al. Evaluation of the Suitability of Biocompatible Carriers as Artificial Transplants Using Cultured Porcine Corneal Endothelial Cells, Current Eye Research, 44 (3),
243-2492, 2019.https://pubmed.ncbi.nlm.nih.gov/30339045/
- Biology Open (2018), Ali Z. et al. Adjustable delivery of pro-angiogenic FGF-2 by collagen-alginate microspheres.Biology open, bio. 027060, 2018/1/1.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898261/
- Macromolecular Bioscience (2016), Sherrell, P.C. et al. Rational Design of a Conductive Collagen Heart Patch, Macromolecular Bioscience, 21 March 2017, DOI: 10.1002/mabi.201600446.
https://pubmed.ncbi.nlm.nih.gov/28322510/
- Biomaterials (2016), Rafat M. et al. Composite core-and-skirt collagen hydrogels with Differential degradation for corneal therapeutic applications”, Biomaterials, 83: 142-155,2016.
https://pubmed.ncbi.nlm.nih.gov/26773670/
- Experimental Eye Research(2016), Mikhailova A. et al. Human pluripotent stem cell-derived limbal
epithelial stem cells on bioengineered collagen matrices for ocular surface reconstruction.
Experimental Eye Research, 146: 26-34, 2016. https://pubmed.ncbi.nlm.nih.gov/26658714/
- International Journal of Biological Macromolecules (2015), Shakeri R. et al. Role of the salt bridge between glutamate 546 and arginine 907 in preservation of autoinhibited form of Apaf-1, International Journal of Biological Macromolecules (2015).http://dx.doi.org/10.1016/j.ijbiomac.2015.08.027.
- Tissue Engineering Part A (2015), Koulikovska M. et al. Enhanced Regeneration of Corneal Tissue via a Bioengineered Collagen Construct Tissue Engineering Part A, Volume 21, Numbers 5 and 6, 2015, 2015.
https://pubmed.ncbi.nlm.nih.gov/25412075/
- Acta Biomaterialia (2013) Rafat M. et al. Chitosan Microparticles for Delivery of Proteins to the Retina, Acta Biomaterialia 9, (2013). 7855–7864.https://pubmed.ncbi.nlm.nih.gov/23623991/
- Biomaterials (2010) Rafat, M.et al. PEG-PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells, Biomaterials 31: 3414–3421, IF=8.557.https://pubmed.ncbi.nlm.nih.gov/20149443/
- J. Biomed. Mater. Res.-Part A (2009) Rafat, M. et al. Surface modification of collagen-based artificial cornea for reduced endothelialization. J. Biomed. Mater. Res.-Part A 88: 755-768.
https://pubmed.ncbi.nlm.nih.gov/18357564/
- Biomaterials (2008), Rafat et al. EG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering, Biomaterials 2008 Oct;29(29):3960-72. doi: 10.1016/j.biomaterials.2008.06.017. Epub 2008 Jul 21. https://pubmed.ncbi.nlm.nih.gov/18639928/
- J. Appl. Polymer Sci (2007), Rafat, M. et al. (2007). Surface Modification and characterization of Artificial Cornea for Enhanced Epithelialization. J. Appl. Polymer Sci. 106: 2056–2064.
https://onlinelibrary.wiley.com/doi/abs/10.1002/app.25305
- J.Appl. Polymer Sci (2007), Khulbe, K. C. et al. (2007). Characterization of Surface Modified Hollow Fiber Polyethersulfone Membranes Prepared at Different Air Gaps. J.Appl. Polymer Sci. 104: 710–721. https://onlinelibrary.wiley.com/doi/10.1002/app.24853
- J. Appl. Polymer Sci. (2006), Rafat M. et al (2006). Surface Characterization of Hollow Fibre Membranes Used in Artificial Kidney. J. Appl. Polymer Sci. 101: 4386-4400.
https://onlinelibrary.wiley.com/doi/10.1002/app.23052
- Oncotarget (2016), Cieslar-Pobuda A. et al. Human induced pluripotent stem cell differentiation and direct
transdifferentiation into corneal epithelial-like cells. Oncotarget 06/2016; 7(27).
https://pubmed.ncbi.nlm.nih.gov/27275539/
- Sensors and Actuators B Chemical (2016), Sherrell, P.C. et al. Cardiac and Stem Cell-Cocooned Hybrid Microspheres: A Multi Factorial Design Approach. Sensors and Actuators B Chemical 06/2016; DOI:10.1016/j.snb.2016.06.002. https://www.sciencedirect.com/science/article/abs/pii/S0925400516308541
- Advanced Healthcare Materials (2016), Gelmi, A. et al. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Advanced Healthcare Materials,
04/2016; DOI:10.1002 /adhm.201600307. https://onlinelibrary.wiley.com/doi/10.1002/adhm.201600307
- RSC Advances (2016), Puckert, C. et al. Optimisation of conductive polymer biomaterials for cardiac progenitor cells. RSC Advances 01/2016; 6(67). DOI:10.1039/C6RA11682E.
https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra11682e
- Acta Biomaterialia (2015), Islam M. et al. Functional Fabrication of Recombinant Human Collagen-Phosphorylcholine Hydrogels for Regenerative Medicine Applications, Acta Biomaterialia, Volume 12, 15 January 2015, Pages 70–80. https://pubmed.ncbi.nlm.nih.gov/25448347/
- Neoplasia (2014), Chaabane W. et al. Human-Gyrovirus-Apoptin Triggers Mitochondrial Death Pathway – Nur77 is required for apoptosis triggering: Human-Gyrovirus-apoptin action. NEO-D-14-00280R1,
Neoplasia, September 2014.https://pubmed.ncbi.nlm.nih.gov/25246270/
- Journal of Materials Chemistry B (2014), Gelmi A. et al. Influence of Conductive Polymer Doping on the Viability of Cardiac Progenitor Cells, Journal of Materials Chemistry B, 2014, 2 (24), 3860-3867, IF=4.726.
https://pubs.rsc.org/en/content/articlelanding/2014/tb/c4tb00142g
- Cytometry A. (2014), Cieslar-Pobuda A. et al. Differential fluorescence signal obtained by staining with various pentameric thiophene derivatives. Cytometry A. 2014 Feb 5.doi:10.1002/cyto.a.22437.
https://pubmed.ncbi.nlm.nih.gov/24500794/
- Frontiers in Biosciences (2012), Deb, K. D.et al, Nanotechnology in stem cells research: advances and applications. Frontiers in Biosciences, (2012 Jan 1); 17:1747-1760
https://pubmed.ncbi.nlm.nih.gov/22201833/
Book chapters & Review Articles:
- Corneal Regeneration, Methods in Molecular Biology (2020), Neil Lagali, Mehrdad Rafat, Femtosecond Laser-Assisted Surgery for Implantation of Bioengineered Corneal Stroma to Promote Corneal Regeneration. Corneal Regeneration, Methods in molecular biology (Clifton, N.J.) 2145:197-214, DOI: 10.1007/978-1-0716-0599-8 14, June 2020. https://experiments.springernature.com/articles/10.1007/978-1-0716-0599-8_14
- Stem Cells and Biomaterials for Regenerative Medicine (2019), Sikora B. et al. Examples of Successful Biomaterial-Based Artificial Tissues-Artificial Cornea, in Stem Cells and Biomaterials for Regenerative Medicine, 191-202,2019.
- International Review of Cell and Molecular Biology (2014), Wasik A.M. et al., Reprogramming and Carcinogenesis—Parallels and Distinctions. In Kwang W.Jeon, editor: International Review of Cell and Molecular Biology, Vol. 308, Burlington:Academic Press, 2014, pp. 167-203. ISBN: 978-0-12-800097-7.
- Advanced Materials Letters (2013), Merrett K. et al., Advanced Materials Letters 2013, 4(3), 250-250.Collagen Type I: A Promising Scaffold Material for Tissue Engineering and Regenerative Medicine, A chapter contribution to the edited collection(book) entitled: Type I Collagen: Biological Functions, Synthesis and Medicinal July 2012.
- Ocular Periphery and Disorders (2011), Rafat, M.et al., Artificial Cornea, Ocular Periphery and Disorders, Elsevier, 06-Apr-2011, ISBN 978-0-12-382042-6.
https://shop.elsevier.com/books/ocular-periphery-and-disorders/dartt/978-0-12-382042-6
- Encyclopedia of the Eye, Elsevier, (2010), Rafat, M. et al., Artificial Cornea, Ocular Surface, Encyclopedia of the Eye, Elsevier, (2010) Vol.1 A-C, Page 128-134. https://booksite.elsevier.com/brochures/eye/content.html
- Stem Cells: Basics and Applications(2009), Hackett, J.M.et al., Biomaterials for Enhancing Corneas and Spinal Cord Regeneration, Stem Cells: Basics and Applications, Eds. K.D. Deb, S.M. Totey, Tata McGraw Hill, New Delhi, India, ISBN: 978-0-07-015271-1, 2009.
https://www.accessengineeringlibrary.com/content/book/9780071635721/chapter/chapter27
Encyclopedia of Chemical Processing (2005), Matsuura, T., and Rafat, M., Polymeric Membranes, Encyclopedia of Chemical Processing, Ed.K.B. Lee, Marcel Dekker, New York, NY, USA, 2005.